ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ «МИСИС»

ИНСТИТУТ ТЕХНОЛОГИЙ КАФЕДРА ИНЖИНИРИНГА ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ

ЛАБОРАТОРНАЯ РАБОТА №5

по курсу _Автоматизированное проектирование машин_	
Тема: Создание развёртки из листового металла	
Студент <u>Колодчук Алексей Владимирович</u>	
(ФИО)	(подпись)
Преподаватель <u>Громов Дмитрий Владимирович</u>	
(ФИО)	(подпись)
Допуск к выполнению л/р	
Отметка о выполнении л/р	
Оценка защиты л/р	
Дата защиты л/р	
Зарегистрировано на каф. ИТО	

Москва 2025/2026 учебный год

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ «МИСИС»

Институт Технологий

Кафедра Инжиниринга технологического оборудования

ЗАДАНИЕ

на выполнение лабораторной работы

По курсу	Автоматизированное проектирование машин
Студенту	_ Колодчуку Алексею Владимировичу (ФИО полностью)
	Тема лабораторной работы <u>Создание развёртки из листового металла</u>
2.	Исходные данные <u>Вариант 9, деталь Пластина №1 «ПЛ-01»</u>
3.	Перечень подлежащих разработке вопросов: 3.1. Основные этапы работы Создание модели, преобразование в развёртку, создание чертежа
	3.2. Графическая часть чертёж готового изделия
4.	Задание принял к исполнению студент

Теоретическое введение

Листовой металл — это специализированная среда для проектирования деталей, учитывающая технологию изготовления. Позволяет создавать модели, автоматически генерировать плоские развертки и наносить специфические аннотации.

Развёртка — это плоское представление детали, необходимое для изготовления. Создается из 3D-модели одной командой. Вид развертки можно разместить на чертеже — это единственный вид, который полностью поддерживает аннотации для листового металла.

Фланец — это инструмент для создания стенки детали. Он использует панель свойств для быстрого доступа к настройкам и поддерживает прямое манипулирование геометрией в графической области.

Отбортовка (Грань) — это базовый инструмент для создания первоначальной плоской стенки детали.

Толщина листа — это один из ключевых параметров детали, задаваемый в начале работы. Определяет толщину материала для всех создаваемых фланцев и граней. От толщины зависят расчеты на изгиб и генерация развертки.

Высечной инструмент — это инструмент для создания и применения стандартных или часто используемых вырезов и форм в детали.

Линии сгиба — это автоматически генерируемая система линий на плоской развертке, показывающая, где материал будет сгибаться. Позволяет вручную управлять порядком гибки для оптимизации производственного процесса.